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SU*IARY

To obtain complete and rigorous solutions of the three-dimensional ,
laminar boundary layer over a finite airplane wing , a flat ellipsoid was
chosen as a model to generate concrete results. Initial effort s were . 

-

directed toward calculat ing the inviscid flow and the selection of coordi-
nate systen , and this was followed by a detailed investigation of the
boundary layer restricted to the syn~netry-plane. This Investigation
showed that as the incidence increases , the separation point on the upper
surface does not always move continuously forward ; instead , it first
moves forward and later rearward . Then, at a critical incidence, it
j*ii~s forward and moves thereafter close to the leading edge. This
“separation Jtm~” phenomenon was further found to be little affected by
varying the span, but critically dependent on the chord: a longer chord
prompts a larger jump . Although such separation j ump has been reported for
a body of revolution, it has not yet been reported for wing surfaces. The
significance of this phenomenon is apparent when one considers that the
separat ion j iai~ may well occur on airplane wings In general and probably
accounts for what we m ight call “sudden stall.”
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1. INTROCXJCflON

For aerospace applications, two typical body geometries are of
particular importance for fluid dynamics study : an elongated body such

as a fuselage or missile , and a flat wing . While our recent three-

dimensional boundary layer research has been largely restricted to the

body problem M, time present study focused on the wing .

Investigation of the wing’s boundary layer has been for the most
(345 1part restricted to an infinite yawed wing’- ‘ ‘ ‘, for which the method

and concept are essentially two-dimensional. A complete and rigorous

solution for the bounda ry layer over a finite wing has been hampered by

at least two factors . First , until recent years , calculation for a three-

dimensional boundary problem was impractical . Second, the corresponding

inviscid solutions have been inadequate. Classical linearized lifting-

wing theory yields a singular solution at the edges which, in turn, pre-

vents the boundary layer there from being determined. The result is not

only that the boundary layer s on the upper and lower surfaces imist be

treated separately, as if they were independent, but also that fl ow

separation cannot be accurately determined . (Accurate calculations of

the leading-edge bounda ry layer are critical to accurate determination

of flow separation , as will be seen later.) Qi the experimental side,

three-dimensional boundary layer investigation has been largely limited

to surface-flow visualization, and quantitative measurement has been rare

and fragmentary.

In this study, we choose a flat ellipsoid as a wing model. Fig. 1

shows the flow diagram where a , b and c denote the semi-axes along the
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Symmet ry plane

z y

C /

A
~a x

Fig. 1. Ellipsoidal Wing

r

X,Y, Z-direction. Since the exact inviscid solution~
6
~ for an ellipsoid

is known in simple closed form, our efforts to obtain concrete solutions

were considerably simplified . This model allowed us to study thoroughly

various basic aspects of the boundary layer over a wing-like geometry. A

flat ellipsoid does not embrace all of the lifti ng characteristics of a

real , finite wing. ~bwever, rigorous tre atment of a real wing would

necessarily require the hookup of two extensive caip.iting programs, one

for the inviscid calculation and one for the three-dimensional boundary layer

calculat ion. The task is straightforward, but t ime-consinning. In addition ,

numerical solutions do not usually yield accurate pressure gradients or

C:’.
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even higher derivatives without special efforts. Such elaborate calcu-
lations are perhaps better suited to future refinements. In the early
1950’s, Zaat , et al. attempted to calculate the boundary layer on a

flat ellipsoid ; however, this calculation was restricted to the flat

portion of the body and only scanty results were reported.

The present study was concerned with the synanetry-plane boundary

layer over an ellipso idal wing . As restricted as this problem may be ,
p9 10’similar investigations previously for an inclined body of revolution ’- ‘ ~

revealed new features of fundamental significance. Among them was the

“separation jump” phenomenon, referring to the sudden movement of the

separation point on the leeside synanetry-plane as the incidence cont inues

to increase . As the inc idence incr eases from zero , the separation point

moves only slowly, remaining near the rear end of the inclined body; but

upon reaching a critical incidence, the separation point “jumps ” to the

front end . In the case of a spheroid of thickness rat io 1/4 , this critical

incidence was found to be around 400 . It was also foi ni (U ,12) that a ccanpanying

such discontinuous change of the separation point on the leeside symmetry-

plane, there is a corresponding change of the separation pattern on the

whole body from an open-type of separat ion to a closed-type of separation.

This observation has changed the conception of three-dimensional flow

separation. More recently, Cebeci , Thattab and Stewartson~~
3
~ further

concluded through an as)lnptotic fornulation that the same critical inci-

dence holds also for thinner spheroid even in the limit of zero thickness.

The present study has found a similar separation jump phenomenon.

This was unexpected partly because of the wide differences between a body

flow and a wing flow , and partly because no such separation j ump was ever

I
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reported for a wing-like obstacle in the literature. Why this phenomenon

has eluded the attention of researchers thus far is puzzling . It may be

due to the fact that detailed boundary layer calculations were not

systematically carried out to a sufficiently high incidence. The same is

true for the body of revolution problem prior to our previous publi-

cations (9,10)~ Although it has long been known that when a short separa-

tion bubble on an airfoil bursts into a long one, there results a sudden

change of separation point ; the idea of separation jump considered here is

a distinct phenomenon.

To establish some basic trends, calculations were repeated for the

ellipsoid with different axis-ratios. This report for the most part pre-

sents these findings (section 4) following discussions on the coordinate
1~systems in section 2 and the inviscid solutions in section 3.

:~
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2. COORDINATE SYSTR4S

Several coordinate systems were referred to in the present wing

problem. To avoid confusion, a brief discussion of them follows in

order to make clear why they are introduced and how they are related to

one ax~ ther.

2.1 Ellipsoid Coordinates

The introduct ion of an ellipsoidal, coordinate system~
6
~ is for the

purpose of obtaining the incompressible , potential flow solution by the

classical method of separation of variables. We begin with the b- sic

• I ellipsoid in terme of the rectangular coordinates (Fig. 1),

.1 ‘ x2 Y2 Z2 2 2 2
— 1, a > b  > c  , (1)

then form ,

2 + 2 + — 1 . (2)
a + X  b + A  c + A

Corresponding to values of X from -a2 to ~~ , the result is a large family

of confocal quadric surfaces . The values of A may be divided into three

groups denoted by (~, ii, r )  in accordance with

-a2~~~~~~-b ~ n~~~-c ~~~~~~~

Then the surface ~ constant represents a family of ellipsoids with

• - I) being the basic ellipsoid , n — constant a family of hyperboloid of

— 

- _~~ _, ~~~~~ 
• —

~~~
‘ 

.----, 1~~~~
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of one sheet and ~ = constant a family of hyperboloid of two sheets.

The intersecting curves between these three families of surfaces define • 
-

a set of ellipsoidal coordinates. Fig. 2a shows a set of three such

coordinate surfaces, while Figs. 2b and c present top views of the —

coordinate lines on the basic ellipsoid.

Hyperbo $oid of one sheet

Hyperbo loid of
two sheets

Ellipsoid

(a) Coordinate surfaces (from Ref. 7)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(b) a-constant lines (c) r -constant lines

Fig. 2. Ellipsoidal coordinates 

•~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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V The relations between (
~, t~ , r )  and (X , Y , Z) are

— 
(a

2+~)(~
2+n~(a

2+ç)
( a - b ) ( a -c )

— 
~~~~~~~~~~~~~~ 

‘ (3a ,b ,c)
(b -c)(b -a )

z2 
— 

(c2+9(c
2+n)~c

2+ç)

~c -a2)(c -b2)

Since a set of valu es of (E , ~~ , 
r )  determine eight points in the X , Y , 1-

space, these relations are not unique.

2.2 Ellipsoidal Transformation

A unique transformation may be achieved by introduc ing the angular

I variables i~ and e (14) , so that

- cos * 0~~~*t~~1T ,

t y — ~~ +b2
~ sin cos e , O~~O~~2it ,

z • sinp sin e.

I Since the relations between (q,,O) and ~~~ can be readily to.a~d

from Eqs. (3b ,c) and (4b ,c),  the details are not given here . ~~ the

ellipsoid (~ — 0), Eqs . (4a ,b c )  become

Ii

- - ~~~~~~~~ ________  _ _ _ _
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X - a cos * ,

Y — b sin ~cos 8 , (5a ,b ,c)

Z — c sin~ isin O .

This transformati on yields a unique correspon dence between (X , Y ,Z)

and (F ,*, O ),  resembling the more familiar spherical coordin ates . However,

the surfaces with ~~ , e , ~,, respectively , constants , are not orth agona l

to one anot her ; hence (F , 0, ~) do not form an ortha gona l coordinate system

which can be used , for example , to replace the system (~, n , ~) for obtain-

ing the inviscid solut ion . The purpos e here is simply to incorpo rate later

the coordinates (*, 0) in order to form a boundary layer coordinate system

which does not require orthagonality except on the body surface .

Geonetric ally , for an arbitrary point Q on the ellipsoid , the corres -

pondence between (X ,Y , Z) and (~ 8, ~) is illustrated in Figs . 3a ,b. It

must be emphasized tha t both 8 and ~p are eccentric angles . Fig . 3a shows

how XQ is related to p . Substitut ing a cos i~ into Eq. (1) indicates

that the cross section at X • XQ is an ellipse given by

________ 

2 k
b2sin2

* cZsin2
*

Fig. 3b shows how, in this cross section , the coord inates YQ and ZQ are

related to 8. Fig. 3(c ) shows the coordinat e nets on the ellipsoid sur-

face , consisting of the 8-constant lines and the x- or 
~~

- constant l ines .

These two sets of coordinate lines are ortha gonal to each other.
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z (a) Illustrat ing XQ with ~

~ Radius b sin ‘~‘I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

N

(b) Illustrat ing (YQ. ZQ) with (*, O)
-

~ 8 - const. lines

£ X-const , or

I ‘1’ - const lines
(c) Surf ace coordinate nets

• Fig . 3. Geometric correspondence between (XY ,Z) and (~,0,q,)

)
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2.3 Boundary Layer Coordinates

For the boundary layer coordinates (Fig . 4), we retain the two
surface coordinates * and 0 just discussed, and the normal direction to
the body , designated z. These three coordinates are mutually orthogonal

Z Y

/~~~

‘

~~~~~~~~~~~~ 

X

Fig. 4. Bounda ry layer coordinates

on the body surface , but not above the body. However, nothing more is

required as far as the boundary layer equations are concerned. We shall

further introduc e p to replace ~ so that ,

- c o s * - p ,  O~~~*~~~ir , l�p �-l ,

and 

- 
b ~~i~~2’ 

sin 8 (6a ,b ,c)

Z ,_~.4j.~ 2
’ 

cos O

- 
S
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I The (~ ,6,z) system is very similar to that used in our previous
investigations for the body problem except that 8 here is an eccentric
angle. As a measure of length along the X-dir ection , 31 is more con-
venient than ,1~. (~ie can , of course , also Introduce v - cos 0 in analogy
to p ~~cos 1’ , so that

Va — cos • - p
I

Y/a - ~~. 4i-312 

~J i-v2, (7a ,b ,c)

- • 1  Z/a - ~~ ~I~~p2 v .

However, in using v one must take care of the positive and negative ~~~~
f o r Y a n d Z i n the range 0~~~0 �21T .

I

j

— -
~ - -------—r
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3. INVISCID FLCM INPUTS

3.1 Velocity Potential

Consider all the length coordinates, cartesian or curvilinear , to

be non-dimensionalized by a , the major semi-axis , and retain the same

symbols, X , Y , Z and F , p, ~ for the dimensionless variables. The

velocity potential $ is non-dimensionalized by V~ a , velocities by Vi,,

and pressure by pV1~,
2.

The potential ~~ , due to a uniform flow (non-dimensionalized) cos ~
-

• 
along the Y-direct ion past an ellipsoid (Fig. 1) is given by~

6
~

— ~ ~ + 2 
‘ (cos cx)Y I ‘

~2 
(8a)

~ 0 J~ (~+r~~)8

where

r1 — b/a , r 2 — c/a ,

- [(~+1)(~+r~~) (~+r 2
2 )]

1/2 
, (8b,c,d)

and
F.

8 — r 1r2 I ‘~~‘ •0 j

(~i the surface , ~ — 0 , the potential becomes ,

2 cos a
• 

— 
- 

Y ,

where the subscript s denotes the body’s surface.

‘S 

•~~~~~~~~• . .



-“ “— • • . -----
~~~~~

—-- - - -“I

13

Similarly for a uniform flow sin a past an ellipsoid along the Z-

direction , the corresponding potential is

— Z sin a + 1 2  (sin a) ~ 
d~ , (9a)

,J~ (~+r~)t5

where
I

— r1r2 ~ 2 (9b)
J 

~~~~~

t~i t he body,

2s — Z~Y0 ~ • (9c)

Thus, for an ellipsoidal wing at incidence as depicted in Pig . 1,

the resulting potential is obtained by superimposition ,

) 
— 

~1 2 ,
and (l0a , b)

‘~ 
+ls~~~~2s

The method of evaluating the elliptical integrals is given in the Appendix.

3.2 Surface Flow in Terms of (31,0)

For later boundary layer study, the Inviscid solutions must be —

expressed in terms of the surface coordinates (p, 0).  To do this we first 
• 

-

~

rewrite Eqs . (6a ,b ,c) in non-dimensional form.

Y •—r 1 ~Ji~p2 sin 0 ,

- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 
: 1 ~~
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z — -r2 ~[l_ ~
2 cos o ,

from which the metric coefficients h~ and h9 are found to be

h~ — + + (az) 23 
1/2

r l-~
2 (l-r ~ sin 29 — r 2cos2e)1 1/2 

• I

— [ S  
2 j (h a)

1 — p

IIaxl 2 fay ) 2 1az121 1/2- 
1.

~~~~
.J 

+ + 
~~~ j j

(l-p~)~”~ [r 1
2cos2e + r~ sin2

O}”2 . (lib)

We denote the surface velocities along the p , 9-coordinates by U

a n d V s o that

U — , (12a ,b)

V 
he~°

Substituting in

u — ~ (gi sinO + g2 cos e),
~

V — 4 4~? (-g1cos e + g2 sin e) ,  (12c ,d)
0

-g1cos 8 + g2 sinO

~ + r~sln20) ”2

-

—- - -~~~~~~~~~~~~~~~~~~~~~~~ --
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I

where

2 cos a
— 

~~~~~~~~~~~~~ r 1 ,
0 (12e f)

2 sin ag2 - 
~~

It is noteworthy that V is independent of p.

The surface pressure is given by

P - P. - ~
. 
[i 

- (U2+V2)). (13)

I With some menipulations, one finds the pressure gradients

-~~ ~ h
31~~ 

— — 

~~~~ ~(1-p 2 (1-r~slxi2e-r~cos20)] ‘ 
(14~~

____ 

p (g1cose-g2sine)

h9ao — 
iç [1-u2(l-ijsin2e-r~cos2e))1”2

~2 (-r~+r~)p
2sin9cos0

- -

•
- 

) 
— 

c l-~2(l-r ~sin2e-r ~cos28)

v g1sIn9+g2c0s0-ïç• (r~cosZ e+r~si~~e) 172

• Li .2 (r 2 -r 2) sinOcosO
— v  1 2 (14b)

~ j  iç (r~cos2e+r~sin
20)

LI
_____ - .5— __________________
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3.3 Pressure Distribution

Sample pressure distribution for an ellipsoid with a : b : c - 30

• :6 : 1 at a - 100 is shown in Fig. 5. Although for a wing-like geometry

the gradients around the leading edge and the tip are usually very large ,

they are finite. This highlights the importance of avoiding the linear-

ized thin-w ing theory in the present work. The linearized theory always

yields a singular solut ion at the edges, which , in turn , prevent s the

bounda ry layer there from being determined . Consequently , the bounda ry

layers on the upper and lower surf aces must be treated separately as if

they were independent , and there is no single complete bounda ry layer

solut ion on a finite wing at incidence .
• A recent paper by Bluford~~

5
~ reports a Navier -Stokes solution over

a delta wing. It should not be assumed that once a Navier-Stokes solution

is obtainable, the simpler boundary layer problem (for a finite wing) will

automatically become easy. In this regard it should be pointed out that

the Navier-Stokes solution was obtained with additional constraints, among

which are the assunpt ion of the conical flow and of the independence be-

tween the flows above and below the wing surface. This is not intended

as a criticism of this outstand ing paper , but merely to point out the

current state of knowledge of viscous flow over a finite wing .

• I

- - • •— ~~~~~~~~~~~~~~~~~~~~~~~ S ~~~~~~~~~~~~~~~~~~~~~~~~ • s -
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2.0 - - 0 (root s ection )
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Fig . 5. Surface pressure distribution at chordwise sections
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4. SY?+IETRY-PLM4E BOUNDARY LAYER

• While the calcul ation of the ful l three-dii~ nsional boundary layer

over an entire ellipsoidal wing at incidence is still in progress , con-

sideration in th is section of the report is restricted to the synvnetry-

plane, or the root section of the wing (Fig. 6).

V
z

‘~\ ‘
I

.
~~~‘ ‘

I
,z , w 

~ x
SI’

, ,
~~

Fig. 6. Syninetry-plane flow diagram

With reference to the boundary layer coordinates (section 2), j.i and

o (-1 
~~ 

p ~ 1, 0 ~~~ 0 ~ 2n ) are the surface coordinates . Along the

syninetry plane, p equals zero • z is normal to the body; u , v and w are

• the corresponding velocitie , z is nondijnensionalized by a/i/l~ where

R(_Va/v*, ~~ the kinematic viscosity) is the Reynolds number , w by VJ IL

- 

_
~~~~~~~~~~~~~~~~~~~~~~~~~~~
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u, v are non-dimensionalized with V ,, other inviscid variables such as

U, V , p were already defined in Section 4.

• Along the synmetry-plane ,

• ~~ - , au~~g 0,

(15a,b)

From Eqs. (ila, b),  we also have with p - 0,
I

h8 
— (ijcos

2e + r~sin
20)”2 , (16a,b)

~h9 ~h Mi.
- • — _~

_a
~~ —n- — 0.

4.1 Boundary Layer Equations

In virtue of Eqs. (lSa,b and lôa ,b) the pert inent syninetry-plane

boundary layer equations become,

h0~0 
+ _iç + 

~~~~~~ 

0,

v~v + w .~ x - + . ,

0 8

vau~ ~~ (~~)2 
_____ ~~

h0W 
+ W + _ _ _  - 

~~~~~

h.

__________ - 

~~~~ 
~~~~~~~~~~~~~~~~~~~
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Along with v and w, u~( 3u/Dp) is treated here as an unknown entity by

three equations in two coordinate variables, 0 and z , subject to the

boundary conditions,

v V , u -U  (-p) at z - ’~~, (18a,b)
v _ w up O a t z 0.

As V is independent of p , it remains the same as given in Eq. 12d.

With p = 0, other inviscid inputs become

~~~~~
. g1sino + g2coSO ,

____ 

—V(g~sinO + g2cose)

h0~O h8(r1
2cos2e + r~sin2e) 1”2

~2 (r 2 -r 2) cosO sinO
~ 

-z , (19a,b ,c,d)
0 (r1cos 0 + r2sin 0)

~ p~~) h~~p~ 
= -

.~~~~ [-5~—) —— (r~cos 8 + r2si.n e) =— h 0 .

The skin fr iction cf9 is defined by

• l Iavlcf0 
,•~~~~~~~~ 

(~jJ z+ 0, 
(20)

_______________________ - ~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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and the replacemen t thicknes s is likewise defined by

~ 
— JTL_v/V)dz. (21)

4.2 Method of Solution

The same methods and computing programs were employed for the

solution as those previously used for the sy~mnetry-plane boundary layer

over an inclined body of revolution . The stagni~tion-po int boundary layer

was solved first using a separate computing pro gram previously developed

in accordance with the Howarth-Squire solution ~
16

~ . Then the existing

symetry-plane bounda ry layer program was modified for the present appli -

cat ion . (~i the lower surface , computation begai at the stagnation-po int ,

marching straight toward the separat ion point . For the upper surfac e ,

computation must first pass through the leading-edge, continuing toward

the trailing edge .

The coordinate 0 is very convenient for uniquely designating points

at different quadrants on the lower and upper surfaces , but such an

eccentric angle does not indicate directly the correspong ing location on

the wing. As a minor variation to Eqs . (7a ,b ,c),  we introduce a chordwise

coordinate

v — cos (270°— 9), 0~~~8~~ 2n , -l.0�v ~~1.0,

so that in following the usual convention, v equals +1.0 at the trai ling
• edge (0 - 2709) and -1.0 at the leading edgs (8 • 90°) as shown in Fig. 7. The

distinction between the upper and lower surfaces will be explicitly stated .

4

-- 
p 
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We shall use 0 during the calculations , and use V along with 0 in pre-

senting the results.

/
‘ \ 270—6

- 

_ _ _ _

Fig .. 7. Coordinate v

4 .3 Results

To identify the separation j tnnp phenomenon and to establish some

bas ic trends, calculations were made for four different cases , corres-

ponding to four different axis-ratios a:b:c , each at various incidences .

4.3.1 Case 1 - Typical Problem

Calculation for the first case was based upon axis-ratios a: b:c equal

to 30:6:1. This corresponds to a typical situation for the conventional, j
large aspect-ratio wing. Fig. 8 shows the pressure distribution on the

upper surface . Characteristically, negative pressure prevails near the

leading edge . As the incidence increases, the pressure gradient becomes

larger. The lower-surface pressure distribution is synmtetric to the upper-

surface pressure distr ibution about the center line (Fig. 8), sothat negative
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Fig. 8. Pressure distribution on the upper surface t
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pre ssure would prevail near the trailing edge instead of the lead ing edge.

Note that along the abscissa both. scales of 0 and v are shown .

Fig . 9 shows the skin-friction (Cf0) distribut ion on the lower sur-

face . The mostly negative sign follows from the coordinate system used

where 0 equals zero at the mid-chord on the lower surf ace and increases

clockwise as shown in Fig. 6. After reaching a peak near the leading edge ,

cf9 drops monotonically for smaller a’s (<6°) until it becomes zero . For

larger a ’s (> 60)
, cf0 increases sharply near the trailing edge . reflecting

a strong accelerating flow under an extremely favorable pressure gradient .

As a increases , the separation point defined here by the vanishing of skin

friction , gradually moves rearward .

The detailed variation of Cf8 around the lead ing-edge is shown in

• Fig . 10. In this area , not only Cf8, but also the whole flow undergoes a

drastic change . (~i the upper surface , cf0 reaches a maxinuu close to the F
leadin g edge . For example , at a = 10°, the maximum magnitude is 10 times

larger than Cf0 over the rest of the symnetry-pla ne . The usual inability

to treat the leading-edge boundary layer affects not only the determina tion

of total skin-friction , but more important , the location of separation . As

we shall see next , the latter depends critically on the accurate calculation

of the leading-edge boundary layer to determine whether separation would

take place near the lead ing-edge or further downstream .

The skin friction behavior on the upper sur face is more interesting

(Fig. 11) . When the incidence remains below 10.5° , Cf0 always drops ‘non-

itonica lly until it becomes zero , and the separation point moves continually

forward . At a - 10.75° , the skin friction decreases firs t to a miniimnn and

. 

_ _ _  4-— ---- -.5- - — ~.5-.5•.5_~~~ S SS_.5.5~.L_S _~~~~ .. -- -.5-—- ~~~~~~~~~~~~~~~~~~~~~~~~ 
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Fi g. 9. Skin frict ion on the lower surface
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Fig . 10. Skin fric tion arc*ind the leading edge
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then rises somewhat before finally falling to zero. At slightly higher

incidence, a - 10.85°, the miniim*n skin- fr iction point further shifts

downward, and the separation point moves rearward instead of forward As

this trend continues, the mini~m~n skin-friction touches zero at a 110
,

at which point the separation point takes a discontinuous jump forward .

4.3.2 Case 2 - Shorter Span

In the second case , the chord b and the thickness c were kept fix ed ,
while the span , a , was reduced so that a:b: c equals 10:6:1 and the aspect-

ratio of the wing’s planform thus becomes smaller. The result ing skin-

friction distri bution on the upper surface is shown in Fig. 12. Not ice

again the separa tion-j txnp phenomenon but that in this case the cri tical

incidence increases from 11° (case 1) to 13° . The latter is evidently due

to the smaller aspect-ratio . Thus changing the span does not affec t much

the separat ion-junp phenomenon.

4.3.3 Case 3 - Longer Chord

Case 3 is for a:b:c — 30:8:1. Here , a an ! c are kept constant , while

b is increased from 6 to 8. The corresponding distribution of the skin

friction on the upper surface is shown in Fig. 13. A longer chord makes

the wing more sensitive to an increase of incidence . The non-monotonic

decrease of skin friction as a characteristic of the separat ion j tm~ phe-

nonemom becomes noticeable at smaller incidence , and the critical incidence

for the junp decreases to a - 8. 7° . Of the first three cases studied , the

j unp for case 3 is the most pronounced and covers more than half of the

chord length. Hence , an increase of b with a and c fixed considerably en-

hances the “separation j~mq,” phenomenon.

-~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ l~~~-1f
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Fig. 12. Skin friction on the upper surface
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4.3.4 Case 4 - Shorter Chord

Case 4 is for a: b:c — 20:5:1. In comparison with case 1, the span

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
resulting upper-surface skin friction cfe is shown in Fig. 14. Sur-
prisingly, for all incidences, Cf0 always decreases monotonically to zero;
the separation point moves forward continuously; and the afore-noted

separation j ump was not found . In case 2 , we noted that reduction of a

from 30 to 10 with b and c held constant does not affect the separat ion
jue~~; hence, the disappearance of the separation j ump for the present
case 4 nvst be due to the shortening of b rather than a. In other words ,

a shorter chord tends to reduce or even to eliminate the separation j ump.

This conclusion agrees with the conclusion fran case 3; i .e . ,  the separation

j ta~q depends cri tically on the chord/thickness ratio , with a longer chord
I.

tending to prompt a larger j tinp .

4.3.5 Separation Versus Incidence

The locat ion of the separation point with respect to the incidence for

the four cases considered is suanarized in Fig. 15. The curves are numbered

according to the cases studied. In case 1, as a increases from 60, the sepa-

ration point moves gradually forward ,. at a • 10.850 it begins to move

rearward; and ata-ll °, it jtmips to near the leading edge. The jtm~ for

case 3 is the most drastic whereas case 4 shows no j ump at all. It is wider-

stood that for a < 6° , the separation point always moves forward with in-

creasing Incidence. Results for such low incidences have not been included

In this report because they are not relevant to the main theme of separation

_ _ _ _ _ _ _  
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4.3.6 Jump Mechanism

The reason for the occurrence of separation jump with. a fiat wing

is as was the case for an Inclined body of revoiut ion 1:9,~ O) , i .e.,  the

barrier of the pressure gradient over the front chord . Fig. 16 shows

typical gradient variations corresponding to the pressure distributions

of Fig. 8. At higher incidences, this gradient rises first very rapidly

to a maximum in the front, then falls off. This leads to the fom~ation of

a “hump” or “barrier” of the pressure gradient distribution . When such a

barrier is not sufficiently high and is, therefore, surmountable (e.g.

a < 10° in the case shown) , the flow near the surface may penetrate farther

back even after being severely decelerated . This is reflected in the

varia tion of skin friction presented in Figs . 11-13. There Cf0 decreases

first to a minimun, then gradually rises again before its final drop to

zero further downstrea m . This is a crucial mechanism which prevent s the

separation point from moving forward with increasing incidence and leads

to the subsequent separation jump at a still higher incidence. Obviously

when the barrier is high enough (a > 100) , such flow penetration becomes

increas ingly difficult. At some critical incidence , the near-surface

flow would be stopped near the leading edge and separation occurs immediately.

4.3 .7  Sudden Stall

Whenever a separation jump occurs and the separation begins so close

to the leading edge that stall is likely to follow, especially for the inner

span . Since such a stall occurs suddenly as the incidence increases , it is

therefore appropriate to call it “sudden stall .“
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In this connection, we should mention the classical lif t curve*

(Fig. 17) which illustrates an abrupt stall (see, for example , Ref. 18).
Fbwever, Fig. 17 is strictly established by experiments for two-dimensional
airfoils , and the stall there is usually attributed to the burst of a short
bubble into a long bubble , whereas the fomiation of a bubble separation
further requires the mechanism of a turbulent reattachment . In contrast,

our preceding discussion on separation j ump and sudden stall is based on
straight calculation of three-dimensional laminar bowindary layer along the

symetry-plane without any reference to the bubble (short or long) separa-

tion and the transition to turbulent boundary layer.

I

author thanks Dr. W . Hankey for discussion on this question.

k- .5

_ _ _ _ _  

~~~—.5—~
_ _ _ _ _



37

S. CONCWS IONS

We have thus presented the results relating to the separation jump

for a wing-like body. Although the literature on the wings flow is

abundant , the separation j ump phenomenon has never been reported before.

It is especial ly noteworthy that the separation jump occurs at relatively

high incidence within a narrow range of incidence. If systematic boundary

layer calculations had not been carried out to sufficiently high incidence

with small increments of incidence, the phenomenon could not have been

discovered.

In previously reported studies involving an elongated body , once the

separat ion on the windside and leeside symmetry-plane is systematically

known for various incidences, a general separation pattern over the e~t ire

body can be readily visualized. Consequently, the separation j ump phe-

nanenon for the body problem led us immediately to propose the concept of

open versus closed separation~
11’12

~ long before the full three-dimensional

boundary layer solutions~
1 ,2) were obtained.

In the presen t wing study , the influence of the symmetry-plane flow

is more restricted to the central portion of the wing. From our knowledge

of the separation characteristics along the symmetry-plane, we have not been

able to conceive a similar overall separation picture for an entire wing

except that a sudden stall is likely to follow a separation jump, especially

for the inner span.

Based on the symmetry-plane boundary-layer solutions , we conclude

summarily : 

~~~~~ -_ --—-- -- -
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1) The phenamenon of spearation j ump on an inclined
ellipsoida l wing has been determined .

2) Such a separation jump is not much affected by changes
in span , but is greatly enhanced by a longer chord.

3) Separation jump is likely accompanied by a sudden stall.
4) ~ibject to further verification, real , finite wings are

genera lly subject to separation j urrp and sudden stall.
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I .
APPENDIX

EVALUATION OF INTEGRALS

The method of evaluat ing the integ ral of the type

I 
_ _ _ _ _ _ _ _ _ _ _ _  

, a1 > c s2 > a 3
(x~p) /(x-ci~) (x-a2) (x-u3)

can be found from integral tables (17)~ The basic idea is to introduce a

quadratic trans format ion

— 
a sin2$ + b ,  0~~ $~~~/2~c sin • + d

so that the integral can be expressed in terms of the Legendre ‘S canonical

forms of the elliptical integrals. In this Appendix, • is just an angular

variable (not a velocity potential as in section 3.1) following the con-

ventional notat ion. For our problem, we let

a —cs2, b c s 1, c — — i, d l ,

and write

- 

a - (csl
_ c s2) v ’a1~~cs3 , -

k2 _ 
:2::~

- —-~~~~ -~~ - .5-——- .5- - - - - - 
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Substitution gives

-
~~{~

+.
~

) F(k ,~ ) —  £~.E(k,,)
J 

+ const., for ~

~~ [~
c~~ ~~~~ — dE~~,$) — d(c+~$)~~ k2s 2j+ const.,

for p —

Where F(~,k) and E(~,k) are known as the elliptic integral of the first
and the second kind,

F(k ,~~) — ç~ d•

J.~ jj~~ z~~~~’,~
0 ~~k �l

E(k ,$)  -

The integral for 
~ 

corresponds to the case p , and that for
corresponds t o p - ~~~.

- ‘~~~~~
:___________ 

- ~~~
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